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Abstract: The behaviors of an interface crack between dissimilar orthotropic elastic half- 

planes subjected to uniform tension was reworked by use o f  the Schmidt method. By use of 

the Fourier transform, the problem can be solved with the help of two pairs of dual integral 

equations, of which the unknown variables are the jumps of the displacements across the 

crack surfaces. Numerical examples are provided for the stress intensity factors of the 

cracks. Contrary to the previous solution of the interface crack, it is found that the stress 

singularity of the present interface crack solution is of the same nature as that for the 

ordinary crack in homogeneous materials. When the materials from the two half planes are 

the.same, an exact solution can be otained. 
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Introduction 

In recent years, composite materials and adhesive or bonded joints are being used in wide 

range of engineering field. The fracture of composites and bonded dissimilar materials is induced 

mainly from the interfacial region because the angular comer of bonded materials induces singular 

stress and crack initiation at the interface. Particularly flaws or cracks lying along the interface 

reduce the strength of the structure significantly. Hence, problem of interface cracks in dissimilar 

materials is very important from the view point of interface strength and stress analysis of interface 

cracks have been treated in Refs. [ 1 - 9 ] .  For the interface crack problem, it is well known that 

the stress oscillatory singularity and overlapping of the crack surfaces appear near the interface 
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crack tip and these are quite different from ordinary cracks in homogeneous materials. Therefore, 

in comparison with the ordinary crack problems, it is difficult of analyze accurately the interface 

crack problems. Up to the present, we do not think that this problem has been completely solved. 

In Refs. [9 ~ 11 ] ,  the stress oscillatory singularity and overlapping of the crack surfaces do not 

appear near the interface crack tip for the opening interface crack mode. Some of the more 

significant results, particularly that concerning the discussion of the conditions leading to non- 

oscillating crack tip stress fields were given in Refs. [ 1 2 -  19] .  However,  the interface crack 

model had been changed, i . e . ,  the tips of the crack were assumed to be closed. In Achenbach' s 

work [2~ , the interface crack problem was also studied. Non-oscillating crack tip stress fields were 

obtained in Ref. [ 2 0 ] .  However, it was assumed that there was an adhesive zone at the crack 

tips. 

Mathematically, the solutions in Refs. [ 1 ~ 3 ] are exact forms in spite of the 

incomprehensibility in fracture mechanics. This is probably caused by the unreasonable crack 

model ( I t  is assumed that two crack surfaces lie on the same line and there is an opening 

displacement on the crack surfaces simultaneously). However,  from an engineering viewpoint, it 

is more desirable to seek a solution which is physically acceptable [111 . In the present paper, the 

same problem which was treated by Zhang [91 is reworked by use of a somewhat different 

approach, named the Schmidt method I21-223. It is a simple and convenient method for solving 

this problem. As in many previous studies Is] , in this study too, the problem is solved under the 

assumption that the effect of the crack surface interference very near the crack tips is negligible 

and there is a sufficiently large component of mode I loading so that the crack essentially 

remains open. The Fourier transform technique is applied and a mixed boundary value problem is 

reduced to two pairs of dual integral equations in which the unknown variables are the jumps of 

the displacements across the crack surfaces. To solve the dual integral equations, the jumps of the 

displacements across the crack surfaces are expanded in a series of Jacobi polynomials. This 

process is quite different from those adopted in Refs. [ 1 ~ 20 ] as mentioned above. Numerical 

solutions are obtained for the stress intensity factors. Contrary to the previous solution of the 

interface crack, it is found that the stress singularity of the present interface crack solution is of 

the same nature as that for the ordinary crack in homogeneous materials. When the materials from 

the two half planes are the same, an exact solution can be obtained. 

1 F o r m u l a t i o n  o f  t h e  Problem 

It is assumed that there is an interface crack of length 2l along the x-axis between two 

diss imi laror thotropicelas t ichal f -p lanes-  oo < x < ~ , 0  ~< y < ~ a n d -  ~ < x < ~ ,  

_ oo < y  ~< 0 as shown in Fig. 1. The elastic 

constants involved in this problem are denoted by 

ElJ),/zl~ ' ) a n d v l ~ ) ( i , k  = 1 , 2 , 3 ) ,  where j  = 1,2 

corresponds to the half-planes y >I 0 and y ~< 0. 

Dimensionless components of the displacement in x - ,  

y-directions are assumed to be u ( i )  , v ( j )  , 

respectively, where u (i) = u ( i ) ( x , y )  and v ( j )  = 

v(j) ( x ,  y )  The nonzero stress components -(i) and �9 0 x y  

yT 1 

Fig. 1 Geometry and coordinate system for 

the interface crack 

x 
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(0 are given by (Yyy 

4 ) cl )au+ 4r //lJ ) = --aTx + a y  (J = 1 , 2 ) ,  (1)  

aOy ) a u  (i) 3vO)  
//~i 2) - a y  + 3 x  (J = 1 ,2) .  (2) 

The non-dimensional parameters cl~ ) ( i ,  k = 1 , 2 , 3  , j  = 1,2) involved in the above equations are 

related to the elastic constants by the relations: 

c~{ ) E(J) / [  " ( J ) { 1  1)(J)2E(J)/E(J))] = 1 / /x12 \ -- 12 2 / 1 , 

( j)  ( ' )  ( j)  ( j) J) ( j)  C6~ ) E 2  / [ / / 1 6  ( 1  - 1)12 aE2 /E , ( "  )] = c,, =2r(J)/E(/)/,, (3) 

(") (j)  (J) ( ' )  ( j )  J) cl ) = e l{  > 1)16 E2 / [ / / 1 2  (1 - I)16 E 2 //El )] = v'(J):(J)12 t'22 ---- ( j  = 1,2) 

for generalized plane stress, and by 

c{{ ) = E{J)( 1 - vg)~32'(J)/rA(J)'/' ~12 ( j ) ) ,  

= -- Vl 3 v31 / ~ a . a  ,o:12 , 

) = > + = 

(4) 
E(J)r ,q) v~) ,(J) ~(J) / ~(J))/(A(J) //IJ2 >) 2 t, Vl2 + v31 L'I /* ' : ' 2  

A (]) = I- ~I~ )v2({ )- 1)g)~)- 1)~1)~I~ )- 

!;19/' ) t'23'(J) t+31'(J) -- "13'(J)'J'21 ( j)  1)~) (J = 1,2) 

for plane strain. The cons tants  El / )  and 1)I~ ) ( i ,  k : 1 ,2 ,3 )  satisfy Maxwell 's relation: 

>. (5) 
In this paper, we just consider the generalized plane stress problem. 

The equations of equilibrium of the orthotropic materials, in the absence of body forces, 

may be expressed as follows: 
c~{) a2u(J.__~ ) a2u(J ) a2v(J) 

ax  = + ~ + (1 + c{~ )) axay 0 ( j  = 1 , 2 ) ,  (6)  8),2 

c2(i) ~2v(J) 32v(J) 32 u(J) 
- -  + - -  + (1  + c} i  ) )  - 0 ( j  = 1 , 2 ) .  ( 7 )  

8y  2 3x 2 3 x a y  

These equations are to be solved subject to the boundary conditions: 
a(1) =(2) a(1) (2) 0 (8) yy = oyr = -  a0; xy = a~r = O, I x I <~ l ,  y = , 

= = _ ( n  (2) _ ( n  = ,.,,(2) I x I~<  l y : O ,  ( 9 )  u (1) u(2); v O) v(2); oyy = cTrr ; oxy ~ y  , 

u (j) = v (j) = 0; a~{) = a~{) = 0 for ~ / x 2 +  y2.__~ oo ( j  = 1 ,2) .  (10) 

2 Solut ions  

Because of the symmetry, it suffices to consider the problem for x I> 0, I y I < ~ �9 As 

discussed in Ref. [9 ] ,  Eqs. (6) ~ (7) can be solved giving 

2;= [ A l ( s ) e - r ,  v + A 2 ( s ) e - r 2 ' r ] s i n ( s x ) d s ,  (11) u ( 1 ) ( x ' Y )  = -~ o 

2 f * O [ a l A l ( S ) e - r ,  sY + a 2 A 2 ( s ) e - r 2 s r ] c o s ( s x ) d s ,  (12) v O ) ( x ' Y )  = -~ o 

[ Bl (S)e~ '3  sy + B 2 ( s ) e r , ' Y ] s i n ( s x ) d s ,  (13) u ( 2 ) ( x ' Y )  = -~ o 
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' / ) ( 2 ) ( X ' Y )  = -- ~ ' -  [ a 3 n l ( $ )  e73sy + ct4B2(s)e~'dY]cos(sx)ds, ( 1 4 )  

Cll - Cll  - c ] l  - 3 - 

where 21 - (1 + ~12 /71 (1 + cl2 ,72 (1 + )73 (1 + ~12 ~(1)'~ , 22 - (1) ~ ' 23 - c122) ' t24 -- ~ ( 2 ) )  74 

Aj( s ) and B/ ( s )  ( j  = 1 ,2)  are unknown functions to be determined. 

Quantities z �9 7j ( j  = 1,2)  are real and positive roots of the equation 

(1) ,v4 ~(1) 2 ,~ (1) ~ ( 1 ) ~ ( 1 )  72  ~(1) 
22 / + [ + d5C12 ] + 0. (15) v12 -- t, l l  t, 22 t, l l  _- 

Q u a n t i t i e s  z �9 7i( J = 3 ,4 )  are real and positive roots of the equation 

C(2) ,a,,4 2 2 
22 / + [C~2 ) +.",Z6.12(2) -- t'11~(2)~(2)] 7 2 " 2 2  + ~lt~(2) = 0. (16) 

Substituting Eqs. (11) ~ (14) into Eqs. (1) ~ ( 2 ) ,  it can be obtained 

(1) 2~| (~) 
~" 3 s [ A l ( s ) ( ~ 1 2  - c22~'~.~11)e -r' ' '  + 

/G" = ; 0 
- -  (1) (17 a2(s);r r ~2 72)e- ~e'loos(sx)d~, (17) 

a(~) 2 f  | �9 r s [ A l ( s ) ( a l  + 71)e -rdr + A2(s)(a2 + 72)e-r~Y]sin(sx)ds (18) 
~ = - ; o 

a(2) 2 ~| (2) (2) 
YY J s [B l ( s ) ( c l2  - c22 - . tx . ) ' 3 )e r ,  ,y + ~I~ ~ ~- 0 

B2(s) (c l  2 - .  {2) _ c22{2) a474)er'*Y]cos(sx)ds, (19) 

(2) 2 f| axz S[Bl (S) (a3  + 73) er'sr + B 2 ( s ) ( a 4  + 74)er'SY]sin(sx)ds. (20) 
~I~ ~ = -;  o 

By substitutions and using boundary conditions (8) - ( 9 ) ,  we obtain 

/z121)[Al(s)( ~O)~,2 - c619)a171) + A2(s)(,.12~(1) _ c22(1) a272)]  = 

~ l ~ E ~ , ( s ) ( c l ~  ~ o ~ 2 ~ 7 ~ )  + B 2 ( , ) '  ~2~ ~2~ kCl2  "22 2474) ] (21) -- t,22 -- , 

tz~12)[Al(s)(a~ + 71) + A2(s ) ( a2  + 72)]  = 

- tz~)[B~(s)(a3 + 73) + B 2 ( s ) ( a 4  + 74) ] .  (22) 

So jumps of the displacements across the crack surfaces can be defined as follows: 

f~ (x )  = u(~)(x,O) - u(2)(x,O), (23) 

f 2 ( x )  = v(~)(x,O) v(2i(x,O),  (24) 

where f~(x)  is an odd function, f 2 ( x )  is an even function. A ( x ) ( i  = 1,2)  is an unknown 

function of x to be determined by the boundary conditions. However, in the previous works, the 

unknown function is ~ ( i = 1 , 2 ) ,  i . e . ,  the dislocation density function. 

Applying the Fourier transforms and Eqs. ( 11 ) ~ (14) and (23) ~ (2 4 ) ,  it can be obtained 

fCi(s) = A , ( s )  + Az(s)  - B , ( s )  - B2(s) ,  (25) 

? 2 ( s )  = a l a l ( s )  + a2Aa(s) + a3Bl(S) + a 4 B 2 ( s  ) . (26) 

A superposed bar indicates the Fourier transform. If f ( x  ) is an even function, the Fourier 

transform is defined as follows: 

f" f ( s )  = f ( x ) c o s ( s x ) d x ,  f ( x )  = sx)ds.  (27) 
0 

If f (  x ) is an odd function, the Fourier transform is defined as follows: 



734 ZHOU Zhen-gong and WANG Biao 

f ( s )  = f ( x ) s i n ( s x ) d x ,  f ( x )  2 [ ~ ? (  = s ) s i n ( s x ) d s .  (28) 
0 7~ J0 

By solving four Eqs. (21) - (22) and (25) ~ (26) with four unknown functions, 

substituting the solutions into Eqs. (17) - (18) and applying the boundary conditions (8) ~ (9), 

it can be obtained 

-- ~ ..t o 8 [ d 1 7 1 ( 8 )  + = -  o- 0 

(1), ,0) 2/'t~1) ** 
tYxy kX = -- [ s E d 3 . f l ( , ~ )  + d 4 f 2 ( s ) ] s i n ( s x ) d s  = 0 

f |  = 0 ( x  > l ) ,  
0 

~ r 2 ( s ) c o s ( s x ) d s  = 0 ( x  > l ) ,  (32) 
o 

where da, d2, d3 and d 4 are constants (See Appendix). Other it can be obtained that dl = 0, 
(1) (1) _(1).(1))(q3ql + _ 

C12 C12 -- e l l  t'22 qoql qaq2 + qoq2) 
d 2 = 

4-r q0 
(1) (1),~ and d4 = 0 if we take ( E l l ) , / ~ k  ,~ik , = 

/ q 3  - qo ~ + qo ~(t)~(1) ~(1)lo ~(I) 
ql = ~(1) ' q2 = (1) 'q3 = t, ll t~22 - t, 12 ~z., + ~12 ) ,  qo = 

t'22 ~ C 2 2  

~/[c~1)( 2 + cl~ )) - ~11"(1)~(1)12~22, _ ,~Cl 1 ~  (1).(1)~22 . To determine the unknown functions f l ( s )  and 

./ '2(s),  the above two pairs of dual integral equations (29) - (32) must be solved. 

3 S o l u t i o n s  o f  t h e  D u a l  I n t e g r a l  E q u a t i o n s  

(O<~ x < l ) ,  

(29) 

(O <. x <~ l ) ,  

(30) 

(31) 

As mentioned above, this problem is solved under the assumption that the effect of the crack 

surface interference very near t/he crack tips is negligible and there is a sufficiently large 

component of mode I, loadingSo that the crack essentially remains open. This assumption had 

been used in Erdogan s paper~ \  It can be obtained that the jumps of the displacements across the 

crack surface are finite, differentiable and continuous functions. Hence, the jumps of the 

displacements across the crack surface can be expanded by the following series: 

f l ( x )  = anrzn+in(1/2'l/2) 1 - , for 0 ~< x ~< l ,  (33) 
n=O 

f l ( x )  = 0, for x > l ,  (34) 

f2 (x )  = ~'~/'n--2~~ __x~ 1 - f o r 0  ~< x ~< l (35) 
,oo ~ l J  ' ' 

f 2 ( x )  = 0, f o r x  > l ,  (36) 

where a n and b~ are unknown coefficients, pCnl/2'I/z)(x) is a Jacobi polynomial [233 . 

The Fourier transform of Eqs. (33) ~ (36) is [241 

~c1( '$)  = 2 r  a,'-'a J2n+a(S/) G(I) = ~(-- I) "p(2n + 2 + I/2) 
. . o  ' ( 2 n  + 1 ) !  ' ( 3 7 )  

(I) (I) (I) ~(I) 
-- C12 C12 + Cll t~22 

, d3 = 

~ ( ~ / q 3  - qo +~/q3 + qo) 
( - (2 ) ,  (2) v12)) ( i  k = 1 2 , 3 )  Where 12, i I A  ik  , , , , 
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1 P ( 2 n  + 1 + 1/2)  
~fz(s) = b"G(~2) s Jzn+l(sl)' G0) = ~ /~( -  1)n (2n)V ' (38) 

n = 0  * 

where F(  x ) and Jn ( x ) are the Gamma and Bessel functions, respectively. 

Substituting Eqs. (37) - (38)  into Eqs. (29)  ~ ( 3 2 ) ,  it can be shown that Eqs. (31)  ~ 

(32) are automatically satisfied. After integration with respect to x in [0 ,  x ] ,  Eqs. (29) - (30) 

reduce to 

2~--(11'~ ~o~:.= 1--[dlanG(na'J2n+2(Sl)s 

~o X| 1 [ d3 anG(nl)J2n+2 (st) 0 $ 

From the relationships [23] 

~; +Jn(sa)sin(bs)ds 

+ d2bnG(n2)J2n+t(sl)]sin(sx)ds =_ ao x 

(0~< x ~< l ) ,  (39) 

+ d4bnG(~2)J2a+2(sl)][cos(sx) - l i d s  : 0 

(0 ~< x ~< l ) .  (40) 

'sin[ narcsin( b/a)]  
n 

= a%in(nTt/2)  

.n[ b + ~ / b  2 -  a2] n 
cos[ n a r c s i n ( b / a )  ] 

; . . +  n 
o J~(sa)eos(bs)ds = a%os(n~/2) 

nE b + ~ f ~ -  a2] n 

(a > b) ,  

(41) 
(b > a ) ,  

(a > b) ,  

(42) 
(b > a ) ,  

the semi-infinite integral in Eqs. (39) - (40) can be evaluated directly. Equations (39) ~ (40) 

can now be solved for the coefficients an and b~ by the Schmidt method [21 ~ 23]. For brevity, Eqs. 

(39) ~ (40) can be rewritten as 

2 anE2 ( x )  + ~-]b~F2 (x)  = Uo(x) (0 << x << l ) ,  (43) 
n=O n=O 

2 a n G :  (x)  + 2 b n H ;  (x)  = 0 (0 ~ x ~ l ) ,  (44) 
n = 0  n = 0  

where E~ ( x ) , F ~  ( x ) ,  G~ (x)  and U~ ( x )  and Uo(x) are known functions, a n and b n are 

unknown coefficients. 

From Eq. (44 ) ,  it can be obtained 

~ b n n  : (x )  = -  2 a n G :  (x ) .  (45) 
n = 0  n = 0  , 

It can now be solved for the coefficients b~ by the Schmidt method [zl~z:'25"31] . Here the form 

- 2 a~G ~ ( x ) can be considered as a known function temporarily. A set of functions Pn ( x ) ,  
n= O 

which satisfy the orthogonality condition 

IP..(,~)P,,(,~)dx =. N.#ma, Nn = P2.(x)Ox (46) 
0 o 

can be constructed from the function, Hn ~ ( x ) ,  such that 

Pn(x) = 2 ,.o "M-~ Hi~ ( x ) ,  (47) 
Min 
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where Mij is the cofactor of the element dij of Dn, which is defined as 

doo , do1, do2,"" , don 

d l0 ,  d l l ,  d12, "'" , d i n  

d20, d21, d22, "'" , d 2 n  

Dn = . . . . . . . . . . . . . . . . . . . . . . . .  , dii = H:  ( x ) H /  ( x ) d x .  (48) 
0 

, ,  . . . .  , . . . .  , . . . . . . . . . . .  , 

, , ,  * * ~  ~  , , ,  * * , ,  . . . . . . .  �9 

dn0, dnl, dn2, " " ,  dnn 

Using Eqs. (45) - (48 ) ,  we obtain 

with - a i G[ ( x ) P i ( x ) d x .  (49) bn = q j M . o  " qJ : ,:o o 

Hence, it can be rewritten 

bn = aiKin, Kin = - . NjMo.aoG[ ( x ) P j ( x ) d x .  (50) 
i = 0  1 =  n 

Substituting Eq. (50) into Eq. (43) ,  it can be obtained 

2 " anY2 (x )  = Uo(X),  Y,~ ( x )  = E• ( x )  + ~Kn~iF~ ( x ) .  (51) 
n : 0  i=O 

So it can now be solved for the coefficients an by the Schmidt method again as mentioned above. 
(1)) (~E,(2) With the aid of Eq. (50) the coefficients bn can be obtained. When ( El l) ,/~I~ ) , vik 

,ul~) (2)~ ( i , k  1 , 2 , 3 )  it can be obtained that a n 0 (n  0 , 1 , 2 , 3 ,  ) ,  b 0 , 1 )  ik ] = , = = . . .  = 

- (ao4~lld2,al~))  and bn = 0 (n  = 1 , 2 , 3 , 4 , ' " ) .  

4 Stress  I n t e n s i t y  Factors  

The coefficients an and b n are known, so that the entire stress field can be obtained. 

However, in fracture mechanics, it is important in fracture mechanics to determine the stresses 

(1) and - (1) along tTyy(1) and axy(1) in the vicinity of the crack tips . In the case of the present study, ayy oxy 

the crack line can be expressed as 

" O ) ~ o f o  (~) (2) - ( 1 ) ( X , 0  ) _ 1"//12 [ dlanG n J2n+2(sl) + - -  d2bnG n J2n+l(Sl)]cos(sx)ds (52) 
O y y  7~ n= 

12 [d3a . . . . .  2(s / )  + (1)(x ,0)  2,u GO)J o d4bnG~2)J2n+l(Sl)]sin(sx)ds (53) 
xy  = - -  7~ 0 

(2)) ( i  k 1,2 3) -O) and (m) along the crack line (') (E?),.I~ ~,~ . , ,o. % W h e n  ( Ell),~tl2),l)ik = , = 

can be exactly expressed as 
(1) r| [t12 / = 

_O) ( x ,0)  d2 b0 Col2)J1 ( s l )  cos( sx )ds 
o yy  - -~- d O  

| - a o  ( x  < l ) ,  

- a o l  f J l ( s l )cos(sx)ds  = { ~ / ~  _a__o12___ 
o _ : [ ~  + ~ / ~ _  :3  

( l ) (x ,0 )  = 0. tT xy  

( x >  l ) ,  

(54) 
(55) 
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When the materials of  the two half  planes are the same,  an exact solution can be obtained by 

use of  the Schmidt method.  This is also proved th.at the Schmidt method is performed 

satisfactorily. 

An examination of Eqs.  (52)  ~ (55)  shows that, the singular part of  the stress field can be 

obtained from [23] the relationships as follows: 

[ cos[ narcsin( b / a ) ] 

o J ~ ( s a ) c o s ( b s ) d s  : / _ _ _ _  a__n%in(_n~/2__ ) _ _ _  ( b  > a ) ,  

L- =z]. 
[si_n_[ n arcs i n_____~( b/_____aa )__]] 

;| j a,v/_~_ b_ ~ (a > b), 
o J a ( s a ) s i n ( b s ) d s  = I a%os(nTr/2)  __  (b  > a ) .  

The singular part of  the stress field can be expressed respectively as follows ( l < x ) : 

where H(~ J) ( x ) - 

(1) 
2d2/z12 ~ . .  ,~(2) rr(1)/_ 

IT(Z) - Z..aOnt'n n ,  ~ x ) ,  ( 5 6 )  

2d3/.t 12 - (1) 2 
r ( x )  "(1)" (2)rx)  (57)  = -  a n t . r  n n n \ , 

7r 4=0 

( _  1)"+1/2"+1 , H ? ) ( x )  = ( -  1)n+l/2~+z 

, / x  z _ tZEx + zz12.+1 12E  + - 2232.+z" 

The stress intensity factors K I and K II can be written as follows: 

, , -  (1)~_, P ( 2 n  + 1 + 1 /2 )  
K I = l i m ~ / 2 r t ( x  - l ) a ( x )  - za2lzx2 ~ b ,  ( 2 n ) T  ' (58)  

- ( 1 )  | 

KII = lim ~/2r r (x  - l )  r ( x )  = 2d3/~1z ~ .  F ( 2 n  + 2 + 1 /2 )  
,_,. - ~ ~7~__0 an ( 2 n  + 1 ) !  (59)  

When (E(1) ,/Ilk U - i  " ,~'ik'(O) = (El2). '[lik(2) ,1~ik(2) 3. ( i , k  = 1 , 2 , 3 )  , the stress intensity factors K I 

and K II can be exactly written as follows: 

K1 = a o ' 4 ' ~ ,  KII = 0. (60)  

5 N u m e r i c a l  C a l c u l a t i o n s  a n d  D i s c u s s i o n  

As discussed in Refs.  [ 2 1 , 2 2 , 2 5  - 31 ] ,  i t c an  be seen that the Schmidt method is performed 

satisfactorily if the first ten terms of  infinite series to Eqs.  ( 4 3 )  ~ ( 4 4 )  are retained. At 

(a ) /a~is  - l ~< x ~< l ,  y = 0 ,  it can be obtained that a r - u very close to negative unity Hence,  the 

solution of  the present paper can also be proved to satisfy the boundary conditions ( 8 ) .  The 

dimensionless stress intensity factors K/ao  are calculated numerically.  As an example ,  the 

numerical results of  the present paper are shown in Fig. 2.  From the results, the following 

observations are very significant: 

( [ ) Contrary to the previous solution of the interface crack,  it is found that the stress 

singularity of  the present interface crack solution is of  the same nature as that for the ordinary 

crack in homogeneous materials.  
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( ii ) When the materials of  the two half planes are the same, an exact solution can be 

obtained by use of  the Schmidt method. This is also proved that the Schmidt method is performed 

satisfactorily. 

( i i i )  From the results, the stress intensity factors are independent of  material constants. 

This is the same as the conclusion in Ref. [ 9 ] .  However,  in Refs. [ 1 - 3 , 7  ] ,  the results of  the 

stress intensity factors are dependent of  materials from the two half planes. 

( i V )  In the present paper, the unknown variables of  dual integral equations are the 
3.0: 

2.0 

1.0 

I I I I 

0.( K~/ao 

0.8 1'.6 214 

l 

Fig. 2 The stress intensity factor versus l 

R e f e r e n c e s :  
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[2]  

[3]  

[4] 

[5]  

displacement across the crack surfaces. However, 

in the previous works, the unknown variables of  

dual integral equations are the dislocation density 

functions. This is the major difference. 

( V ) In this paper,  we give a new approach 

to solve the opening interface crack problem. 

During the solving process, the mathematical 

difficulties are not met,  i . e .  the oscillatory stress 

singularity and the overlapping of  the crack 

surfaces do not meet. 

( V i )  The stress intensity factors K i / a  o 

increase almost linearly when the length of  the 

crack increases as shown in Fig. 2.  
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Append ix  

H 1 = 

F 1 = 

131 = 

P 2  = 

P3  = 

P 4  = 

Po = 

R 1 = 

R 2 = 

R 3 = 

R 4 = 

Q1 = 

Q2 = 

Q3 = 

Q4 = 
dl = 

(1) _ 0(1)a4~/4,  ) - = - = _ = c 1 :  

0~1 + ~ t l ,  F 2  = ~ + ~ 2 ,  F3  = a3  + Y3 ,  F 4  = 0~4 + ) t4 ,  
( 2 ) ( / /  E' . (2) (2) rr 17, (1) ( 1 )  , ,  I:, (1) ~ (1) 3 

0tE/-t12 x . ,~4*3/~12  -- H 3 F g / z 1 2  - H 3 r l / . t 1 2  + H g F I / - t I 2  - t / l r 3 ~ 1 2  + H1P4 / . t 12  / ,  

(2 ) [  1:, (2) r~ r ,  (1) (1) rr  w (1) r', (2) (1) 
0tl/A12 [. H 3  H 4 (  / ' 4 ~ 1 2  + H 3 / ~ 2 ~ 1 2  + H 2 F 3 / z 1 2  - " r / 2 / ' 4 ~ 1 2  -- r3 /Z12  + FE~t12 ) 1 ,  

(1 ) [  H 3 (  F2) / . t 12 )  (2) (2) (1) ~ (1) 014/A12 L -- F I  + H1F3, u + + H2F1 HI ] - 12 H 2  g 3 / z  12 /212 - /~ 2[A 12 , 

(1) ~ 2 )  ~ (2) 15" (2) , ,  r ,  (1) (1) 
0t3/Z12 [Hg(FI  - F 2 )  + H 1 / ~ 4 ~ 1 2  - H 2 , 4 / A 1 2  - / - / 2 / ' 1 ~ 1 2  + H 1 F 2 / A 1 2  ] ,  

P1 + P2 + P3 + P4, 

(2)~FaEHI(HgF3 H3F4) + aIH2(H3F4 H4F3)] /212 I_ -- -- 

,ul~) lul2)[a3H2H4F1 + agH1H3F2 - a3H1HgF2 - agHEH3F1), 
2 2 

/~12 ) ( -  HIHgF 3 + H2HgF3 + H1H3F4 - HEH3F4) , 
(1 ) .  (2) /-t12 /-'12 ( -  H2H3F1 + HEHgFa + H1H3F2 - H1HgF2),  

(2)~[ HgalF2F 3 + alH3FEF4 + aEFI(HgF3 H3F4) /A12 -- -- 

/1121)/.112)( - t X 4 H l F 2 F  3 - o t 3 H 2 F 1 F 4  + t 2 3 H 1 F 2 F  4 + ct4H2F1F3) ,  

(2)2[ H 4 ( F  1 F 2 ) F 3  + H 3 F 1 F 4 . -  H3F2F4] /.112 -- _ ~, 

[A11)[2~2)( - H I F 2 F 3 -  H 2 F 1 F  4 + H 1 F 2 F  4 + H 2 F I F 3 ) ,  

( R 1  + R 2 ) / P o ,  d2  = ( R 3  + R 4 ) / P o ,  d3 = ( QI + Q 2 ) / P o ,  d4 = ( Q3 + Q g ) / P o  �9 


